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3.4 Applications of the Universal Coefficient Theorem
Example 3.17. Singular Homology of a Topological Space X

Let S(X) € Ch(Ab) be the singular complex of X, then each S, (X) is a free
abelian group. For M € Ab, define homology of X with coefficients in M:

Ho(X; M) := Ho(S(X) @ M)

By the Universal Coefficient Theorem for Homology, for each n, we have the
following:

H,(X;m)= H,(X;Z)® M & Tor?(H,_1(X;Z), M).

Theorem 3.18 (Kiinneth formula for complexes). Let R be a PID, P, €
Ch(modg), then each P, is free. Let Qo € Ch(gmod). Then for each n there
exists a split short exact sequence:

0= @ Hy(P)orH(Q) = Ho(PRrQ) » €D Tor{!(Hy(P), Hy(Q)) — 0.

pt+g=n p+g=n—1

Example 3.19. Let X, Y be topological spaces. Consider X x Y. Eilenberg
Zilber Theorem gives the following isomorphism:

Hy(S(X xXY)) 2 Ho(S(X)®S(Y)).
Then by 3.18, we have

Hy(X xY;R) =

D (H:i(X: R) @ Hy—i(Y; R))

i

@Torl R),Hn—i-1(Y; R))

When R is a field, Tor groups vanish and we obtain the following isomorphism:

H,(X x Y;R) = (P (H;(X;R) ®r H,—i(Y; R)).

i



4  Spectral Sequences

Our goal is to compute homology groups in a systematic way. Generally, a
spectral sequence is a sequence of “pages”, and each “page” has a grid of objects
that approximate homology. Move from “page n” to “page n+1” by calculating
homology.

4.1 Introduction

Begin with the following example.

Example 4.1. Let F,+ be a 15 quadrant double complex. To compute the
homology of Tote(E), use the following spectral sequence.

Define “page 07 as follows: EJ = E, 4, dj , := (—1)Pd} .

q
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Each column is a chain complex, thus we can compute vertical homology at
each point.

Then define “page 1” to be E},yq = Hq(Eg_’.). For each p, d;}_’. : Egy, — ngl,.
is a morphism of chain complexes, then the morphisms in “page 1”7 are naturally
defined to be d}, , := Hy(dl ) : Hy(E),) — Hy(EJ_, ).
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Each row is a chain complex. At each point, compute horizontal homology and



define “page 2” as follows: E? = H,(E, ).

®.q

Define morphism d%y, as the first exercise in the sheet 8 or the exercise 5.1.2

in the textbook, so that each line of slope —% is chain complex. Repeat this
process and we can define “page n”.

To see why we are doing this, and how this spectral sequence is an approximation
of homology of Tot(E, ), we will see another example.

Example 4.2. Suppose the only non-zero columns of E, . are Ay = Ey o and
B, = E;.. Then the above spectral sequence computes Ho(T0t(E)) up to
extension in the sense that Vn there is a short exact sequence

0— Egy — Ho(T) = Ef,_; — 0.
Proof. First, calculate Eg’n and Einfl:
Eg,n - HO(EE,’IL) = COkeT(din)
E%,n—l = Hl(Eol,n—l) = ker(d%,n—l)'
For each n, there is a short exact sequence:
0— EO,n 7—n> Eo,n D E17n_1 Iy E17n_1 —0
~— ——
A, Tot(E), B[-1],
and thus the short exact sequence of chain complexes:
0— AL Tot(E) 5 B[-1] — 0,

yielding the following long exact sequence:

coo = Hyr (B[-1)) 2 H,(A) 2 H,(Tot(E)) = H,(B[-1]) — ...
| —
H, (B) Hyn_1(B)
Thus there exists an exact short sequence for each n:

Tn

0 — coker(9y,) = Ho(Tot(E)) = im(m,) — 0
——
ker(On—1)
Now we claim 8, = Hy(d},). In fact, if [b] € H,(B), then 7,11(0,[b]) =
[b], and d;95(0,b) = (df ,,(b),df (b)) = (di,,0). Since in(d},) = (df,,0),
therefore 9y, ([b]) = [d},,] = Hn(d} ,)([b]). Hence the claim holds and we finish
the proof. O



4.2 Homology Spectral Sequences and Cohomology Spec-
tral Sequences

Definition 4.3. A homology spectral sequence (starting with E%) in an abelian
category A consists of the following data:

1. For each r > a, a family {E] ,}, 4ez of objects in A;

2. For each r > a, a family { d, ,: B} , — E,_, ., 1 } of morphisms in A,

such that d"d" = 0, i.e. each line of slope 7r;1 is a chain complex;

3. For each r > a, Vp, q € Z, we have E}t! = ker(dy, ) /im(dy ., ;. 11)-
The total degree of £ is p + ¢. Each dj , decreases the total degree by 1.

Definition 4.4. Let E, E’ be spectral sequences over A, a morphism f : E — E’
is a family of morphisms in A: f] : EJ  — E;, where r is suitably large such
that d" f" = f"d" and f;;l is induced by f; . on homology.

Remark 4.5. There is a category of homology spectral sequences.
Dually we can define cohomology spectral sequence.

Lemma 4.6 (Mapping lemma). Let f : E — E’ be a morphism between two
spectral sequences such that for some fized r and each pair p,q, f, , s an iso-
morphism. Then for each s > r, f; . is an isomorphism.

Proof. We have the following commutative diagram:

T i r+1
B zr, Ert 0

p,q p,q

0
I I I
0.

I 2 /r+1 N ,
BP-,‘I vaq Epvq 0

By five lemma, f;;l is an isomorphism. By induction, for each s > r, f;  is an
. :
isomorphism.

Definition 4.7. A homology spectral sequence E is bounded if for each n, there
are finitely many non zero terms of total degree n in E ,.

~

Lemma 4.8. If E is bounded, for each p and q, there exists ro such that £, , =
Epo, for every r > rq.

Proof. First notice that if Ef /=0 for some p, ¢, then by definition and induc-
tion we have for each r > a, £, . = 0.

For each fixed p, ¢, choose r( large enough such that p+r is sufficiently large and
p—ro is sufficiently small, such that for every r > ro, Ej., . 1 =Ep_, 4. 1 =

T — T —
0, thus for each r > ro, Ef, . .1 =FE) . .. 1 =0.

For each r > rg consider the chain complex

T
= Eprgrt1 = Epg = Eprgir1 =
r+1 ~ pr . T o~ I'ro
we have B = B . Thus E) = EJo, for each 7 > rg. O



We write £, for this stable value of E} .

Definition 4.9. Let E be bounded. We say F converges to H, if we are given
a finite filtration of subobjects

OZFan c.. nglenngHn c gFtHn:Hn
such that EpS, = FyHyyq/Fp1Hpy g
We denote this by Ef , — Hpq.

Definition 4.10. A spectral sequence E collapses at E” if there is only one
non-zero row or column in E". If F collapses and converges to H,, we have
H, =E, , where p+q=n.

Definition 4.11. (E* terms) Let E be a spectral sequence. There is a se-
quence:

o a r r+1 r+1 r a a
O*Bmg"'anqunq c---cz gZp,qg"'gzpyq*Enq

such that B} /By ' = im(d"), Z] ,/Z]%" = ker(d"), and E} , = Z7 /By .
Introduce the intermediate objects:

By = U By, and Z7 = m Zpq
and define EpS, = Z5,/BpS,. This definition is compatible with the bounded

»q
case.

Remark 4.12. In an unbounded spectral sequence we tacitly assume that Bp<,,
Zye, and E7S exist. It is true for the category of modules.

Definition 4.13. We say a spectral sequence E is bounded below if for every
n there exists an integer s(n), such that p < s(n) implies Ej, , = 0. Dually
change “<” into “>” for the cohomology case.

Definition 4.14. We say a spectral sequence F is regular if for each p, g there
exists an integer ro, such that dj, , = 0 for every r > 7.

Lemma 4.15. Bounded below spectral sequences are regular.

Proof. Let E be a bounded below spectral sequence. For each fixed p, g, choose
ro such that 7o > p — s(p + ¢ —1). Thus for each r > ro, Ef_,. ., 1 = 0.

Then for every r > ro we have Ej_, ., = 0, which implies that the map
dyqg Epqg—= By qyr—1 =01s just 0. O



