Homological Algebra Seminar Week 8

Haotian Lyu after the talk of Ballard William Roberts and Blum Milo Nicolas Jacques

3.4 Applications of the Universal Coefficient Theorem

Example 3.17. Singular Homology of a Topological Space X

Let $S(X) \in Ch(Ab)$ be the singular complex of X, then each $S_n(X)$ is a free abelian group. For $M \in Ab$, define homology of X with coefficients in M:

$$H_{\bullet}(X;M) := H_{\bullet}(S(X) \otimes M)$$

By the Universal Coefficient Theorem for Homology, for each n, we have the following:

$$H_n(X; m) \cong H_n(X; \mathbb{Z}) \otimes M \oplus Tor_1^{\mathbb{Z}}(H_{n-1}(X; \mathbb{Z}), M).$$

Theorem 3.18 (Künneth formula for complexes). Let R be a PID, $P_{\bullet} \in Ch(mod_R)$, then each P_n is free. Let $Q_{\bullet} \in Ch(_Rmod)$. Then for each n there exists a split short exact sequence:

$$0 \to \bigoplus_{p+q=n} H_p(P) \otimes_R H_q(Q) \to H_n(P \otimes_R Q) \to \bigoplus_{p+q=n-1} Tor_1^R(H_p(P), H_q(Q)) \to 0.$$

Example 3.19. Let X, Y be topological spaces. Consider $X \times Y$. **Eilenberg Zilber Theorem** gives the following isomorphism:

$$H_{\bullet}(S(X \times Y)) \cong H_{\bullet}(S(X) \otimes S(Y)).$$

Then by 3.18, we have

$$H_n(X \times Y; R) \cong$$

$$\left[\bigoplus_{i} (H_{i}(X;R) \otimes_{R} H_{n-i}(Y;R))\right] \oplus \left[\bigoplus_{i} Tor_{1}^{R}(H_{i}(X;R), H_{n-i-1}(Y;R))\right]$$

When R is a field, Tor groups vanish and we obtain the following isomorphism:

$$H_n(X \times Y; R) \cong \bigoplus_i (H_i(X; R) \otimes_R H_{n-i}(Y; R)).$$

4 Spectral Sequences

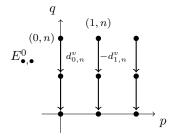
Our goal is to compute homology groups in a systematic way. Generally, a spectral sequence is a sequence of "pages", and each "page" has a grid of objects that approximate homology. Move from "page n" to "page n+1" by calculating homology.

4.1 Introduction

Begin with the following example.

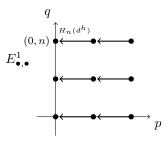
Example 4.1. Let $E_{\bullet,\bullet}$ be a 1st quadrant double complex. To compute the homology of $Tot_{\bullet}(E)$, use the following spectral sequence.

Define "page 0" as follows: $E_{p,q}^0 := E_{p,q}, d_{p,q}^0 := (-1)^p d_{p,q}^v$.



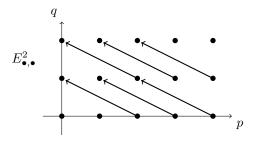
Each column is a chain complex, thus we can compute vertical homology at each point.

Then define "**page 1**" to be $E^1_{p,q} := H_q(E^0_{p,\bullet})$. For each $p, d^h_{p,\bullet} : E^0_{p,\bullet} \to E^0_{p-1,\bullet}$ is a morphism of chain complexes, then the morphisms in "page 1" are naturally defined to be $d^1_{p,q} := H_q(d^h_{p,\bullet}) : H_q(E^0_{p,\bullet}) \to H_q(E^0_{p-1,\bullet})$.



Each row is a chain complex. At each point, compute horizontal homology and

define "page 2" as follows: $E_{p,q}^2 := H_p(E_{\bullet,q}^1)$.



Define morphism $d_{\bullet,\bullet}^2$ as the first exercise in the sheet 8 or the exercise 5.1.2 in the textbook, so that each line of slope $-\frac{1}{2}$ is chain complex. Repeat this process and we can define "page n".

To see why we are doing this, and how this spectral sequence is an approximation of homology of $Tot(E_{\bullet,\bullet})$, we will see another example.

Example 4.2. Suppose the only non-zero columns of $E_{\bullet,\bullet}$ are $A_{\bullet} = E_{0,\bullet}$ and $B_{\bullet} = E_{1,\bullet}$. Then the above spectral sequence computes $H_{\bullet}(Tot(E))$ up to extension in the sense that $\forall n$ there is a short exact sequence

$$0 \to E_{0,2}^2 \to H_n(T) \to E_{1,n-1}^2 \to 0.$$

Proof. First, calculate $E_{0,n}^2$ and $E_{1,n-1}^2$:

$$E_{0,n}^2 = H_0(E_{\bullet,n}^1) = coker(d_{1,n}^1)$$

$$E_{1,n-1}^2 = H_1(E_{\bullet,n-1}^1) \cong ker(d_{1,n-1}^1).$$

For each n, there is a short exact sequence:

$$0 \to \underbrace{E_{0,n}}_{A_n} \xrightarrow{i_n} \underbrace{E_{0,n} \oplus E_{1,n-1}}_{Tot(E)_n} \xrightarrow{\pi_n} \underbrace{E_{1,n-1}}_{B[-1]_n} \to 0$$

and thus the short exact sequence of chain complexes:

$$0 \to A \xrightarrow{i} Tot(E) \xrightarrow{\pi} B[-1] \to 0,$$

yielding the following long exact sequence:

$$\cdots \to \underbrace{H_{n+1}(B[-1])}_{H_n(B)} \xrightarrow{\partial_n} H_n(A) \xrightarrow{\widetilde{i_n}} H_n(Tot(E)) \xrightarrow{\widetilde{\pi_n}} \underbrace{H_n(B[-1])}_{H_{n-1}(B)} \to \cdots$$

Thus there exists an exact short sequence for each n:

$$0 \to \operatorname{coker}(\partial_n) \xrightarrow{\widetilde{i_n}} H_n(\operatorname{Tot}(E)) \xrightarrow{\widetilde{m_n}} \underbrace{\operatorname{im}(\widetilde{m_n})}_{\operatorname{ker}(\partial_{n-1})} \to 0$$

Now we claim $\partial_n = H_n(d_{1,\bullet}^h)$. In fact, if $[b] \in H_n(B)$, then $\widetilde{\pi}_{n+1}(0,[b]) = [b]$, and $d_{n+1}^{Tot}(0,b) = (d_{1,n}^h(b), d_{1,n}^v(b)) = (d_{1,n}^h, 0)$. Since $i_n(d_{1,n}^h) = (d_{1,n}^h, 0)$, therefore $\partial_n([b]) = [d_{1,n}^h] = H_n(d_{1,\bullet}^h)([b])$. Hence the claim holds and we finish the proof.

4.2 Homology Spectral Sequences and Cohomology Spectral Sequences

Definition 4.3. A homology spectral sequence (starting with E^a) in an abelian category \mathcal{A} consists of the following data:

- 1. For each $r \geq a$, a family $\{E_{p,q}^r\}_{p,q \in \mathbb{Z}}$ of objects in \mathcal{A} ;
- 2. For each $r \geq a$, a family $\{d_{p,q}^r: E_{p,q}^r \to E_{p-r,q+r-1}^r\}$ of morphisms in \mathcal{A} , such that $d^r d^r = 0$, i.e. each line of slope $-\frac{r-1}{r}$ is a chain complex;
- 3. For each $r \geq a, \forall p, q \in \mathbb{Z}$, we have $E_{p,q}^{r+1} \cong ker(d_{p,q}^r)/im(d_{p+r,q-r+1}^r)$.

The **total degree** of $E_{p,q}^r$ is p+q. Each $d_{p,q}^n$ decreases the total degree by 1.

Definition 4.4. Let E, E' be spectral sequences over \mathcal{A} , a morphism $f: E \to E'$ is a family of morphisms in \mathcal{A} : $f^r_{p,q}: E^r_{p,q} \to E'^r_{p,q}$ where r is suitably large such that $d^r f^r = f^r d^r$ and $f^{r+1}_{p,q}$ is induced by $f^r_{p,q}$ on homology.

Remark 4.5. There is a category of homology spectral sequences.

Dually we can define cohomology spectral sequence.

Lemma 4.6 (Mapping lemma). Let $f: E \to E'$ be a morphism between two spectral sequences such that for some fixed r and each pair p, q, $f_{p,q}^r$ is an isomorphism. Then for each $s \ge r$, $f_{p,q}^s$ is an isomorphism.

Proof. We have the following commutative diagram:

By five lemma, $f_{p,q}^{r+1}$ is an isomorphism. By induction, for each $s \geq r$, $f_{p,q}^s$ is an isomorphism.

Definition 4.7. A homology spectral sequence E is bounded if for each n, there are finitely many non zero terms of total degree n in $E^a_{\bullet,\bullet}$.

Lemma 4.8. If E is bounded, for each p and q, there exists r_0 such that $E_{p,q}^r \cong E_{p,q}^{r_0}$ for every $r \geq r_0$.

Proof. First notice that if $E^a_{p,q}=0$ for some p,q, then by definition and induction we have for each $r\geq a, E^r_{p,q}=0$.

For each fixed p,q, choose r_0 large enough such that $p+r_0$ is sufficiently large and $p-r_0$ is sufficiently small, such that for every $r \geq r_0$, $E^a_{p+r,q-r+1} = E^a_{p-r,q+r-1} = 0$, thus for each $r \geq r_0$, $E^r_{p+r,q-r+1} = E^r_{p-r,q+r-1} = 0$. For each $r \geq r_0$ consider the chain complex

$$\cdots \to E^r_{p+r,q-r+1} \to E^r_{p,q} \to E^r_{p-r,q+r-1} \to \cdots$$

we have $E_{p,q}^{r+1} \cong E_{p,q}^r$. Thus $E_{p,q}^r \cong E_{p,q}^{r_0}$ for each $r \geq r_0$.

We write $E_{p,q}^{\infty}$ for this stable value of $E_{p,q}^{r}$.

Definition 4.9. Let E be bounded. We say E converges to H_{\bullet} if we are given a finite filtration of subobjects

$$0 = F_s H_n \subseteq \cdots \subseteq F_{p-1} H_n \subseteq F_p H_n \subseteq \cdots \subseteq F_t H_n = H_n$$

such that $E_{p,q}^{\infty} = F_p H_{p+q} / F_{p-1} H_{p+q}$.

We denote this by $E_{p,q}^a \to H_{p+q}$.

Definition 4.10. A spectral sequence E collapses at E^r if there is only one non-zero row or column in E^r . If E collapses and converges to H_{\bullet} , we have $H_n = E_{p,q}^r$ where p + q = n.

Definition 4.11. $(E^{\infty} \text{ terms})$ Let E be a spectral sequence. There is a sequence:

$$0 = B_{p,q}^a \subseteq \cdots \subseteq B_{p,q}^r \subseteq B_{p,q}^{r+1} \subseteq \cdots \subseteq Z^{r+1} \subseteq Z_{p,q}^r \subseteq \cdots \subseteq Z_{p,q}^a = E_{p,q}^a$$

such that $B^r_{p,q}/B^{r-1}_{p,q}\cong im(d^r)$, $Z^r_{p,q}/Z^{r+1}_{p,q}\cong ker(d^r)$, and $E^r_{p,q}\cong Z^r_{p,q}/B^r_{p,q}$. Introduce the intermediate objects:

$$B_{p,q}^{\infty} = \bigcup_{r=a}^{\infty} B_{p,q}^{r}$$
 and $Z_{p,q}^{\infty} = \bigcap_{r=a}^{\infty} Z_{p,q}^{r}$

and define $E_{p,q}^{\infty}=Z_{p,q}^{\infty}/B_{p,q}^{\infty}$. This definition is compatible with the bounded case.

Remark 4.12. In an unbounded spectral sequence we tacitly assume that $B_{p,q}^{\infty}$, $Z_{p,q}^{\infty}$ and $E_{p,q}^{\infty}$ exist. It is true for the category of modules.

Definition 4.13. We say a spectral sequence E is bounded below if for every n there exists an integer s(n), such that p < s(n) implies $E_{p,n-p}^a = 0$. Dually change "<" into ">" for the cohomology case.

Definition 4.14. We say a spectral sequence E is regular if for each p, q there exists an integer r_0 , such that $d_{p,q}^r = 0$ for every $r \ge r_0$.

Lemma 4.15. Bounded below spectral sequences are regular.

Proof. Let E be a bounded below spectral sequence. For each fixed p,q, choose r_0 such that $r_0 > p - s(p+q-1)$. Thus for each $r \ge r_0$, $E^a_{p-r,q+r-1} = 0$. Then for every $r \ge r_0$ we have $E^r_{p-r,q+r-1} = 0$, which implies that the map $d^r_{p,q}: E^r_{p,q} \to E^r_{p-r,q+r-1} = 0$ is just 0.