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3.4 Applications of the Universal Coefficient Theorem

Example 3.17. Singular Homology of a Topological Space X

Let S(X) ∈ Ch(Ab) be the singular complex of X, then each Sn(X) is a free
abelian group. For M ∈ Ab, define homology of X with coefficients in M :

H•(X;M) := H•(S(X)⊗M)

By the Universal Coefficient Theorem for Homology, for each n, we have the
following:

Hn(X;m) ∼= Hn(X;Z)⊗M ⊕ TorZ1 (Hn−1(X;Z),M).

Theorem 3.18 (Künneth formula for complexes). Let R be a PID, P• ∈
Ch(modR), then each Pn is free. Let Q• ∈ Ch(Rmod). Then for each n there
exists a split short exact sequence:

0 →
⊕

p+q=n

Hp(P )⊗RHq(Q) → Hn(P⊗RQ) →
⊕

p+q=n−1

TorR1 (Hp(P ), Hq(Q)) → 0.

Example 3.19. Let X,Y be topological spaces. Consider X × Y . Eilenberg
Zilber Theorem gives the following isomorphism:

H•(S(X × Y )) ∼= H•(S(X)⊗ S(Y )).

Then by 3.18, we have

Hn(X × Y ;R) ∼=[⊕
i

(Hi(X;R)⊗R Hn−i(Y ;R))

]
⊕

[⊕
i

TorR1 (Hi(X;R), Hn−i−1(Y ;R))

]

When R is a field, Tor groups vanish and we obtain the following isomorphism:

Hn(X × Y ;R) ∼=
⊕
i

(Hi(X;R)⊗R Hn−i(Y ;R)).
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4 Spectral Sequences

Our goal is to compute homology groups in a systematic way. Generally, a
spectral sequence is a sequence of “pages”, and each “page” has a grid of objects
that approximate homology. Move from “page n” to “page n+1” by calculating
homology.

4.1 Introduction

Begin with the following example.

Example 4.1. Let E•,• be a 1st quadrant double complex. To compute the
homology of Tot•(E), use the following spectral sequence.

Define “page 0” as follows: E0
p,q := Ep,q, d

0
p,q := (−1)pdvp,q.

p

q

E0
•,•

(0, n)

(1, n)

dv
0,n −dv

1,n

Each column is a chain complex, thus we can compute vertical homology at
each point.
Then define “page 1” to be E1

p,q := Hq(E
0
p,•). For each p, dhp,• : E0

p,• → E0
p−1,•

is a morphism of chain complexes, then the morphisms in “page 1” are naturally
defined to be d1p,q := Hq(d

h
p,•) : Hq(E

0
p,•) → Hq(E

0
p−1,•).

p

q

E1
•,•

(0, n)
Hn(dh)

Each row is a chain complex. At each point, compute horizontal homology and
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define “page 2” as follows: E2
p,q := Hp(E

1
•,q).

p

q

E2
•,•

Define morphism d2•,• as the first exercise in the sheet 8 or the exercise 5.1.2

in the textbook, so that each line of slope − 1
2 is chain complex. Repeat this

process and we can define “page n”.
To see why we are doing this, and how this spectral sequence is an approximation
of homology of Tot(E•,•), we will see another example.

Example 4.2. Suppose the only non-zero columns of E•,• are A• = E0,• and
B• = E1,•. Then the above spectral sequence computes H•(Tot(E)) up to
extension in the sense that ∀n there is a short exact sequence

0 → E2
0,2 → Hn(T ) → E2

1,n−1 → 0.

Proof. First, calculate E2
0,n and E2

1,n−1:

E2
0,n = H0(E

1
•,n) = coker(d11,n)

E2
1,n−1 = H1(E

1
•,n−1)

∼= ker(d11,n−1).

For each n, there is a short exact sequence:

0 → E0,n︸︷︷︸
An

in−→ E0,n ⊕ E1,n−1︸ ︷︷ ︸
Tot(E)n

πn−−→ E1,n−1︸ ︷︷ ︸
B[−1]n

→ 0

and thus the short exact sequence of chain complexes:

0 → A
i−→ Tot(E)

π−→ B[−1] → 0,

yielding the following long exact sequence:

· · · → Hn+1(B[−1])︸ ︷︷ ︸
Hn(B)

∂n−→ Hn(A)
ĩn−→ Hn(Tot(E))

π̃n−−→ Hn(B[−1])︸ ︷︷ ︸
Hn−1(B)

→ . . .

Thus there exists an exact short sequence for each n:

0 → coker(∂n)
ĩn−→ Hn(Tot(E))

π̃n−−→ im(π̃n)︸ ︷︷ ︸
ker(∂n−1)

→ 0

Now we claim ∂n = Hn(d
h
1,•). In fact, if [b] ∈ Hn(B), then π̃n+1(0, [b]) =

[b], and dTot
n+1(0, b) = (dh1,n(b), d

v
1,n(b)) = (dh1,n, 0). Since in(d

h
1,n) = (dh1,n, 0),

therefore ∂n([b]) = [dh1,n] = Hn(d
h
1,•)([b]). Hence the claim holds and we finish

the proof.
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4.2 Homology Spectral Sequences and Cohomology Spec-
tral Sequences

Definition 4.3. A homology spectral sequence (starting with Ea) in an abelian
category A consists of the following data:

1. For each r ≥ a, a family {Er
p,q}p,q∈Z of objects in A;

2. For each r ≥ a, a family { drp,q : Er
p,q → Er

p−r,q+r−1 } of morphisms in A,

such that drdr = 0, i.e. each line of slope − r−1
r is a chain complex;

3. For each r ≥ a, ∀p, q ∈ Z, we have Er+1
p,q

∼= ker(drp,q)/im(drp+r.q−r+1).

The total degree of Er
p,q is p+ q. Each dnp,q decreases the total degree by 1.

Definition 4.4. Let E,E′ be spectral sequences overA, a morphism f : E → E′

is a family of morphisms in A: fr
p,q : Er

p.q → E′r
p,q where r is suitably large such

that drfr = frdr and fr+1
p,q is induced by fr

p,q on homology.

Remark 4.5. There is a category of homology spectral sequences.

Dually we can define cohomology spectral sequence.

Lemma 4.6 (Mapping lemma). Let f : E → E′ be a morphism between two
spectral sequences such that for some fixed r and each pair p, q, fr

p,q is an iso-
morphism. Then for each s ≥ r, fs

p,q is an isomorphism.

Proof. We have the following commutative diagram:

Br
p,q

//

fr
p,q

��

Zr
p,q

//

fr
p,q

��

Er+1
p,q

//

fr+1
p,q

��

0 //

��

0

��

B′r
p,q

// Z ′r
p,q

// E′r+1
p,q

// 0 // 0.

By five lemma, fr+1
p,q is an isomorphism. By induction, for each s ≥ r, fs

p,q is an
isomorphism.

Definition 4.7. A homology spectral sequence E is bounded if for each n, there
are finitely many non zero terms of total degree n in Ea

•,•.

Lemma 4.8. If E is bounded, for each p and q, there exists r0 such that Er
p,q

∼=
Er0

p,q for every r ≥ r0.

Proof. First notice that if Ea
p,q = 0 for some p, q, then by definition and induc-

tion we have for each r ≥ a, Er
p,q = 0.

For each fixed p, q, choose r0 large enough such that p+r0 is sufficiently large and
p−r0 is sufficiently small, such that for every r ≥ r0, E

a
p+r,q−r+1 = Ea

p−r,q+r−1 =
0, thus for each r ≥ r0, E

r
p+r,q−r+1 = Er

p−r,q+r−1 = 0.
For each r ≥ r0 consider the chain complex

· · · → Er
p+r,q−r+1 → Er

p,q → Er
p−r,q+r−1 → . . .

we have Er+1
p,q

∼= Er
p,q. Thus E

r
p,q

∼= Er0
p,q for each r ≥ r0.
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We write E∞
p,q for this stable value of Er

p,q.

Definition 4.9. Let E be bounded. We say E converges to H• if we are given
a finite filtration of subobjects

0 = FsHn ⊆ · · · ⊆ Fp−1Hn ⊆ FpHn ⊆ · · · ⊆ FtHn = Hn

such that E∞
p,q = FpHp+q/Fp−1Hp+q.

We denote this by Ea
p,q → Hp+q.

Definition 4.10. A spectral sequence E collapses at Er if there is only one
non-zero row or column in Er. If E collapses and converges to H•, we have
Hn = Er

p,q where p+ q = n.

Definition 4.11. (E∞ terms) Let E be a spectral sequence. There is a se-
quence:

0 = Ba
p,q ⊆ · · · ⊆ Br

p,q ⊆ Br+1
p,q ⊆ · · · ⊆ Zr+1 ⊆ Zr

p,q ⊆ · · · ⊆ Za
p,q = Ea

p,q

such that Br
p,q/B

r−1
p,q

∼= im(dr), Zr
p,q/Z

r+1
p,q

∼= ker(dr), and Er
p,q

∼= Zr
p,q/B

r
p,q.

Introduce the intermediate objects:

B∞
p,q =

∞⋃
r=a

Br
p,q and Z∞

p,q =

∞⋂
r=a

Zr
p,q

and define E∞
p,q = Z∞

p,q/B
∞
p,q. This definition is compatible with the bounded

case.

Remark 4.12. In an unbounded spectral sequence we tacitly assume that B∞
p,q,

Z∞
p,q and E∞

p,q exist. It is true for the category of modules.

Definition 4.13. We say a spectral sequence E is bounded below if for every
n there exists an integer s(n), such that p < s(n) implies Ea

p,n−p = 0. Dually
change “<” into “>” for the cohomology case.

Definition 4.14. We say a spectral sequence E is regular if for each p, q there
exists an integer r0, such that drp,q = 0 for every r ≥ r0.

Lemma 4.15. Bounded below spectral sequences are regular.

Proof. Let E be a bounded below spectral sequence. For each fixed p, q, choose
r0 such that r0 > p − s(p + q − 1). Thus for each r ≥ r0, E

a
p−r,q+r−1 = 0.

Then for every r ≥ r0 we have Er
p−r,q+r−1 = 0, which implies that the map

drp,q : Er
p,q → Er

p−r,q+r−1 = 0 is just 0.
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